This article was downloaded by:
On: 26 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Liquid Crystals

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713926090

On the influence of the Frank elasticity on the magnetic reorientation of nematic polymers

J. P. Casquilho ${ }^{\text {a }}$; L. N. Gonalves ${ }^{\text {a }}$; A. F. Martins ${ }^{\text {b }}$
${ }^{\text {a }}$ Departamento de Fisica, Faculdade de Ciěncias e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal ${ }^{\text {b }}$ Dep. de Ciěncias dos Materiais; Faculdade de Ciěncias e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal

To cite this Article Casquilho, J. P. , Gonalves, L. N. and Martins, A. F.(1996) 'On the influence of the Frank elasticity on the magnetic reorientation of nematic polymers', Liquid Crystals, 21: 5, 651 - 661
To link to this Article: DOI: 10.1080/02678299608032877
URL: http://dx.doi.org/10.1080/02678299608032877

PLEASE SCROLL DOWN FOR ARTICLE

> Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
> This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
> The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

On the influence of the Frank elasticity on the magnetic reorientation of nematic polymers

by J. P. CASQUILHO \dagger^{*}, L. N. GONÇALVES \dagger and A. F. MARTINS \ddagger
\dagger Departamento de Física, \ddagger Dep. de Ciências dos Materiais; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2825 Monte da Caparica, Portugal

(Received 17 July 1995; in final form 22 April 1996; accepted 24 June 1996)

Abstract

We study the influence of the anisotropy of the Frank elastic constants on the magnetic reorientation of the nematic phase of polymer liquid crystals. In the magnetic reorientation following a 90° director rotation with respect to an aligning magnetic field, a pattern of inversion walls develops which depends on the relative magnitude of the elastic constants and the magnetic coherence length. We show how this dependence can be experimentally studied by proton NMR. The transition from a homogeneous director reorientation to a distorted director reorientation is theoretically studied as a function of the rotation angle α. A critical angle of rotation α_{c} shows up, and we study its dependence on the anisotropies K_{3} / K_{1} and K_{3} / K_{2}. Depending on these ratios and on the wavelength of the distortion, critical angles $45^{\circ}<\alpha_{c}<90^{\circ}$ are predicted for materials with positive anisotropy of the magnetic susceptibility χ_{a} and $0^{\circ}<\chi_{\mathrm{c}}<45^{\circ}(\bmod \pi / 2)$ for materials with $\chi_{\mathrm{a}}<0$. Within the frame of a phase transition analogy, a Landau-like theory predicts the transition to be second order.

1. Introduction

The field induced instabilities in nematic liquid crystals have been a regularly visited subject of research over the last ten years, following the pioneering work of Brochard, Guyon and co-workers [1,2]. Most of this research has been developed in the framework of the Freedericksz transition in different geometries with a magnetic and/or an electric field [1-18]. Magnetic reorientational instabilities have also been studied by NMR [18-25]. In a magnetic reorientation experiment, a magnetic field is applied at an angle α to the director of a previously aligned sample. Equivalently, in the NMR experiments with polymer liquid crystals (PLC) reported here, the sample is rotated with respect to the magnetic field [19-23, 25]. For simplicity we will call α the rotation angle in referring to both cases. The subsequent evolution towards equilibrium of the director field is studied as a function of time, by optical or by NMR techniques. The experimental evidence for the field induced instabilities has been reported both for samples of low molecular weight liquid crystals (LMWLC) and PLC as a spatially periodic response to the applied field. When the sample is observed between crossed polarizers, the periodicity of the director field appears as a pattern of parallel stripes.

In standard NMR experiments, the geometry is much

[^0]less defined compared with that for the case of the Freedericksz transition, since the sample is put in a cylindrical tube without special surface treatment with a free surface. However, these experiments seem appropriate to study bulk properties, since the NMR signal is proportional to the sample volume (a few mm^{3}) and the effects of the boundaries reduce to distances of the order of the magnetic coherence length (a few microns). NMR magnetic reorientation experiments on nematic main chain polymer samples with $\chi_{a}>0$ for angles of rotation, with respect to the field \mathbf{H}, of $\alpha<45^{\circ}$ and for $\alpha \cong \pi / 2$ have been successfully simulated using Leslie equations for an infinite medium [19,20,22]. In the first case $\left(\alpha<45^{\circ}\right)$, the reorientational equation corresponds to a uniform director rotation towards equilibrium, while in the second case ($\alpha \cong \pi / 2$), the reorientational equation corresponds to a distorted periodic director evolution from an initial bend instability, with a flow perpendicular to the initial director \mathbf{n}_{0}, as explained in [19, 20]. There is also experimental evidence, both for Fréedericksz transition and NMR magnetic reorientation experiments, that a critical angle of rotation α_{c} separates the uniform director reorientation from the (instability driven) distorted director reorientation [5, 16, 23, 24].

In the first part of this work we will show that the bend reorientational equation leads to a pattern of splay-bend inversion walls. We will focus on the pattern dependence on the elastic anisotropy K_{3} / K_{1} and on a reduced wavelength $u_{\text {max }}$ defined below. Furthermore,
we will show that NMR is a sensitive tool to study this dependence. In the second part of this work, we will investigate theoretically the transition from the homogeneous to the distorted director reorientation. The existence of a critical angle separating the two reorientation regimes and its dependence on the elastic anisotropy and the reduced wavelength of the distortion will be demonstrated.

2. Splay-bend inversion walls

The magnetic field is set perpendicular to the initial homogeneously aligned director n_{0} through a sample rotation of $\alpha \cong \pi / 2$ about an axis normal to \mathbf{n}_{0}. The reorientational equation is a balance of the viscous, magnetic and elastic torques:

$$
\begin{equation*}
\gamma(\theta) \frac{\partial \theta}{\partial t}-\frac{1}{2} \chi_{\mathrm{a}} \mathbf{H}^{2} \sin 2 \theta-K(\theta)=0 \tag{1}
\end{equation*}
$$

where 0 is the angle between the local director $\mathbf{n}(t)$ and the initial director \mathbf{n}_{0}. In equation (1) $\gamma(\theta)$ is an effective viscosity depending on four Leslie viscosities [19, 20], and with \mathbf{n}_{0} set along the OZ axis, the elastic torque is given by

$$
\begin{equation*}
K(\theta)=f(\theta) \frac{\partial^{2} \theta}{\partial z^{2}}+\frac{1}{2} \frac{\mathrm{~d} f(\theta)}{\mathrm{d} \theta}\left(\frac{\partial \theta}{\partial z}\right)^{2} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
f(\theta)=K_{1} \sin ^{2} \theta+K_{3} \cos ^{2} \theta \tag{3}
\end{equation*}
$$

The pattern of the instability generated structure is obtained through the resolution of the reorientational equation (1) in the limit $t \rightarrow \infty$ (when $\partial \theta / \partial t \rightarrow 0$). In dimensionless form, it can be written

$$
\begin{gather*}
{\left[1-\left(1-\rho_{K}\right) \cos ^{2} \theta\right] \frac{\mathrm{d}^{2} \theta}{\mathrm{~d} u^{2}}} \\
+\frac{1}{2} \sin 2 \theta\left[1+\left(1-\rho_{K}\right)\left(\frac{\mathrm{d} \theta}{\mathrm{~d} u}\right)^{2}\right]=0 \tag{4}
\end{gather*}
$$

where u is a reduced distance:

$$
\begin{equation*}
u=z / \xi_{1} \tag{4a}
\end{equation*}
$$

ξ_{1} is the splay magnetic coherence length:

$$
\begin{equation*}
\xi_{1}=\left(K_{1} / \chi_{\mathrm{a}} \mathbf{H}^{2}\right)^{1 / 2} \tag{4b}
\end{equation*}
$$

and ρ_{K} is the ratio of the bend to the splay elastic constants:

$$
\begin{equation*}
\rho_{K}=K_{3} / K_{1} \tag{4c}
\end{equation*}
$$

We first look for solutions of (4) in the one constant approximation $\rho_{K}=1$:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} u^{2}}+\frac{1}{2} \sin 2 \theta=0 \tag{5}
\end{equation*}
$$

This equation, for an infinite medium, with the boundary conditions

$$
\begin{equation*}
\theta(0)=0 \quad \text { and } \quad 0(\infty)=\pi / 2 \tag{6}
\end{equation*}
$$

has an aperiodic solution [26]

$$
\begin{equation*}
\theta(u)=2 \arctan \exp (u)-\pi / 2 \tag{7}
\end{equation*}
$$

corresponding to a Helfrich splay-bend wall, parallel to the field, of width defined as $2 \xi_{1}$. Equation (5) also allows for periodic solutions. This can be easily seen noticing that this equation is identical to the equation of motion of the pendulum in reduced variables. For the pendulum we have

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} t^{2}}=-\omega^{2} \sin \phi \tag{8a}
\end{equation*}
$$

and in our case we have with $\phi=2 \theta$,

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \phi}{\mathrm{~d} z^{2}}=-\xi_{1}^{-2} \sin \phi \tag{8b}
\end{equation*}
$$

We can then import the results known from the pendulum motion [27]: equation ($8 b$) has a periodic solution with a wavelength given by

$$
\begin{equation*}
\hat{\imath}=4 \xi_{1} K(k) \tag{9}
\end{equation*}
$$

where $K(k)$ is the complete elliptic integral of the first kind [28]:

$$
\begin{align*}
K(k) & =\int_{0}^{\pi / 2} \frac{\mathrm{~d} x}{\left(1-k^{2} \sin ^{2}\right.} \frac{}{x)^{1 / 2}} \tag{10}\\
k & =\sin \frac{1}{2} \phi_{\max }=\sin \theta_{\max }
\end{align*}
$$

where $\theta_{\text {max }}$ is the amplitude of the distortion. From (10) we see that

$$
\begin{array}{ll}
\lim K=\pi / 2, & \lim K=\infty \\
\theta_{\max } \rightarrow 0 & \theta_{\max } \rightarrow \pi / 2 \tag{11}
\end{array}
$$

The first limit shows, together with (9), that $\lambda \geqslant 2 \pi \xi_{1}$. The second limit, with (9), means that a finite wavelength must correspond to an amplitude of the distortion smaller than $\pi / 2$. The integral (10) is plotted as a function of $\theta_{\max }$ in figure 1 .

We now turn to the general case $\rho_{K} \neq 1$. We define as before the wall width as $2 \xi_{1}$. We define the quantity $u_{\text {max }}$ as the value of u given by ($4 a$) for $z=\lambda / 4$. Later we show that $u_{\text {max }}$ is an NMR observable and that it can be simply related to the volume fraction of walls in the sample. The wavelength is given in terms of $u_{\max }$ by

$$
\begin{equation*}
\lambda=4 \xi_{1} u_{\max } \tag{12a}
\end{equation*}
$$

and we see that $u_{\max }$ is a reduced wavelength. The comparison of equations ($12 a$) and (9) suggests that the quantity $u_{\text {max }}$ substitutes the function $K(k)$ in dealing

Figure 1. Plot of the integral $K\left(\theta_{\max }\right)$ given by equation (10). This function represents also $u_{\max }\left(\theta_{\max }\right)$ in the case $\rho_{K}=1$ (see text).
with the general case $\rho_{K} \neq 1$. In terms of the wave vector q we have the relation

$$
\begin{equation*}
u_{\max }=\frac{\pi}{2} \frac{1}{\mathbf{q} \xi_{1}} \tag{12b}
\end{equation*}
$$

Equation (4) has been solved numerically by a shooting method using the Runge-Kutta and AdamsMoulton fourth order algorithms. With boundary conditions (6), we get numerical solutions which in the case $\rho_{K}=1$ reduces to Helfrich walls (see curve 1 of figure 2). With periodic boundary conditions $\theta(u=0)=\theta(u=$ $\left.2 u_{\text {max }}\right)=0$, we get periodic solutions corresponding to a K_{3} / K_{1} dependent pattern of splay-bend walls (see curves 2 and 3 of figure 2).

We have shown that equation (1) leads to splay-bend walls, which correspond to a pattern of parallel stripes perpendicular to the initial director. This pattern has been confirmed by optical observations on a main chain nematic PLC [20] and is in agreement with numerical results from the study of the splay Freedericksz transition [4] which show that for high reduced magnetic fields (proportional to field \times sample thickness) the stripe pattern is perpendicular to \mathbf{n}_{0}.

The experimental study of the pattern of inversion walls is conveniently made by NMR. Following [20-22], we will simulate the NMR spectral lineshape $f(v)$ from the spectrum of the aligned monodomain $f_{0}(v)$, assuming that the spectra are determined by dipolar interactions and using the equation

$$
\begin{equation*}
f(v)=\frac{1}{u_{\max }} \int_{0}^{u_{\max }} \frac{f_{0}\left(v / P_{2}(\cos \alpha)\right)}{P_{2}(\cos \alpha)} \mathrm{d} u \tag{13}
\end{equation*}
$$

where $P_{2}(\cos \alpha)$ is the second Legendre polynomial and $\alpha=\pi / 2-\theta(u)$, where u is the reduced distance ($4 a$) and $u_{\max }$ is the reduced wavelength given by ($12 a$), and with $\theta(u)$ given by the numerical solution of (4) with $u_{\max }$ and ρ_{K} as fitting parameters. The NMR spectrum of the wall pattern was taken from reference [20] and refers to a nematic thermotropic main chain polymer labelled AZA9. A simulation is shown in figure 3. The evaluation of $u_{\text {max }}$ and ρ_{K} by this technique depends on the lineshape of the central part of the spectrum as explained in [22]. Poor spectra will give poor results, mainly because there can be a few pairs of $u_{\text {max }}$ and ρ_{K} that give fits of similar

Figure 2. Splay-bend walls as numerical solutions of equation (4). This equation has been solved numerically by the shooting method, fixing the initial slope of the curve (which is related to the parameter ρ_{K}) and the intersection with the u axis (which is $2 u_{\text {max }}$), using the Runge-Kutta and Adams-Moulton fourth order algorithms. Curve 1 is a solution with the boundary conditions (6) with $\rho_{K}=1$, corresponding to a Helfrich-like wall as given by equation (7). Curves 2 and 3 correspond to periodic boundary conditions $\theta(u=0)=\theta\left(u=2 u_{\max }\right)=0$, with $u_{\max }=3.36$ and $\rho_{K}=1$ (curve 2), $u_{\max }=3 \cdot 25$ and $\rho_{K}=$ 03 (curve 3).

Figure 3. Simulation of the wall spectrum of polymer AZA9 with equation (13) and numerical solutions of (4): curve --- fit with $u_{\max }=3.0$ and $\rho_{K}=0.3$.
quality, although these two parameters do not compensate each other exactly for spectral simulation purposes. In the case of the spectrum shown in figure 3, the pair ($u_{\max }=3.0, \rho_{K}=0.3$) gave the best fit, but ($u_{\max }=2 \cdot 5$, $\rho_{K}=0.2$) or ($u_{\max }=3 \cdot 5, \rho_{K}=0.5$) gave similar results.

Once $u_{\text {max }}$ and ρ_{K} are known, the measurement of the wavelength can give full information about the elastic constants K_{1} and K_{3}, if χ_{a} is known, via the relations ($12 a$) and ($4 b, c$). Using the results of [20], $\lambda \cong 60 \mu \mathrm{~m}$ and $\chi_{\mathrm{a}} H^{2}=35.5 \mathrm{erg} \mathrm{cm}^{-3}$, we get from the above first pair ($u_{\max }, \rho_{K}$) the results $K_{1}=8.9 \times 10^{-6}$ dyne and $K_{3}=2.7 \times 10^{-6}$ dyne, while from the second and third pairs we have, respectively, $\left(K_{1}=1.3 \times 10^{-5}\right.$ dyne, $K_{3}=2.6 \times 10^{-6}$ dyne) and ($K_{1}=6.5 \times 10^{-6}$ dyne, $K_{3}=$ 3.3×10^{6} dyne). These results are in good agreement with early data from spectral simulation using the time dependent equation (1) [20]. The advantage of this new method is that it allows the evaluation of the elastic constants independently of the Leslie viscosities which enter in $\gamma(\theta)$.

It is interesting to see that the volume fraction X_{w} of walls in the sample can be simply related to the quantity $u_{\text {max }}$ assuming that the distribution of the wall pattern along the axis of the NMR sample tube is uniform and using equation (12a):

$$
X_{\mathrm{w}} \cong \frac{\text { wall width }}{\text { distance between walls }}=\frac{2 \xi_{1}}{\lambda / 2}=\frac{1}{u_{\max }}
$$

This means that $1<u_{\max }<\infty$, similarly to $K(k) \equiv u_{\text {max }}\left(\rho_{K}=1\right)$ given by (10) as shown in figure 1.

3. Critical angle of rotation

In magnetic reorientation experiments as reported in $[5,16,19,20,23,24]$, the nematic director reorients
uniformly in space for rotation angles below the critical angle α_{c}. Above α_{c}, the director reorients inhomogeneously, inducing backflow. This is a complex mechanism, ruled by the Leslie equations, where the whole set of Leslie viscosities and Frank elastic constants play an important role. Here we will only focus on the distortion of the director field once a wavevector \mathbf{q} is selected. The study of the mechanism responsible for the selection of the wavevector \mathbf{q} for given viscoelastic parameters and magnetic field is beyond the scope of this work. In what follows, we will assume that the system response is slow enough to validate a static analysis (see discussion of the limits of this approximation at the end of this section). For simplicity, we will consider only the planar director problem and two dimensional wavevectors. This should be a good approximation for thick samples in strong magnetic fields, since numerical results for the Fréedericksz transition [4] show that the general threedimensional problem reduces to two dimensions for high reduced magnetic fields (proportional to field \times sample thickness).

Consider a bulk nematic monodomain previously aligned with a strong magnetic field \mathbf{H} and then suddenly rotated so that the uniform director \mathbf{n}_{0} makes an angle α with \mathbf{H}. Our first ansatz for the response of the out of equilibrium nematic will be a harmonic distortion along the unperturbed director \mathbf{n}_{0}, corresponding to a bend distortion. With \mathbf{n}_{0} along the OZ axis and $O Y$ the axis of the sample rotation, we have for the distorted director

$$
\begin{equation*}
\mathbf{n}=(\sin \theta, 0, \cos \theta), \quad \theta=\theta_{0} \sin \Omega, \quad \Omega=\mathbf{q} z \tag{14}
\end{equation*}
$$

The corresponding distortion Frank free energy density [26] is

$$
\begin{align*}
f^{\mathrm{b}}(\theta)= & \frac{1}{2}\left(K_{1} \sin ^{2} \theta+K_{3} \cos ^{2} \theta\right)\left(\frac{\mathrm{d} \theta}{\mathrm{~d} z}\right)^{2} \\
& -\frac{1}{2} \chi_{\mathrm{a}} \mathbf{H}^{2} \cos ^{2}(\theta-\alpha) \tag{15a}
\end{align*}
$$

or

$$
\begin{align*}
f^{\mathrm{b}}(\Omega)= & \frac{1}{2}\left[K_{1} \sin ^{2}\left(\theta_{0} \sin \Omega\right)\right. \\
& \left.+K_{3} \cos ^{2}\left(\theta_{0} \sin \Omega\right)\right] \mathbf{q}^{2} \theta_{0}^{2} \cos ^{2} \Omega \\
& -\frac{1}{2} \chi_{\mathrm{a}} \mathbf{H}^{2} \cos ^{2}\left(\theta_{0} \sin \Omega-\alpha\right) \tag{15b}
\end{align*}
$$

The interesting quantity for an infinite medium is the mean free energy density per wavelength:

$$
\begin{equation*}
F^{\mathrm{b}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f^{\mathrm{b}}(\Omega) \mathrm{d} \Omega \tag{16}
\end{equation*}
$$

The calculation gives the result

$$
\begin{align*}
F^{\mathbf{b}}= & \frac{1}{8} \mathbf{q}^{2} \theta_{0}^{2}\left[K_{1}+K_{3}+\left(K_{3}-K_{1}\right) \frac{J_{\mathbf{1}}\left(2 \theta_{0}\right)}{\theta_{0}}\right] \\
& -\frac{1}{4} \chi_{\mathbf{a}} \mathbf{H}^{2}\left[1+\cos (2 \alpha) J_{0}\left(2 \theta_{0}\right)\right] \tag{17}
\end{align*}
$$

where J_{0} and J_{1} are Bessel functions of the first kind (see Appendix A1). We can rewrite (17) in dimensionless form:

$$
\begin{equation*}
\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)=\frac{1}{2} \varepsilon_{1} \theta_{0}^{2} g_{\mathrm{b}}\left(\theta_{0}\right)-\left[1+\cos (2 \alpha) J_{0}\left(2 \theta_{0}\right)\right] \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{\mathrm{b}}\left(\theta_{0}\right)=\rho_{K}+1+\left(\rho_{K}-1\right) \frac{J_{1}\left(2 \theta_{0}\right)}{\theta_{0}} \tag{19}
\end{equation*}
$$

and where $\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)=4 F^{\mathrm{b}} / \chi_{\mathrm{a}} \mathbf{H}^{2}, \rho_{K}$ is given by (4c) and

$$
\begin{equation*}
\varepsilon_{1}=\frac{K_{1} q^{2}}{\chi_{\mathrm{a}} \mathbf{H}^{2}} \tag{20}
\end{equation*}
$$

is a ratio of an elastic to magnetic energy. This quantity is easily related to the reduced wavelength $u_{\text {max }}$ with the help of equations ($12 b$) and (4b):

$$
\begin{equation*}
\varepsilon_{1}=\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \tag{21}
\end{equation*}
$$

From the plot of the bend potential $\Phi_{a}^{\mathrm{b}}\left(\theta_{0}\right)$ for several values of the rotation angle α, with $u_{\max }$ (or ε_{1}) and ρ_{K} as parameters, a critical angle of rotation α_{c} shows up, separating two different ranges of α, as shown in figure 4 for the polymer AZA9: for $\chi_{\mathrm{a}}>0$, for values of α up to α_{c} the minimum of $\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)$ lies at $\theta_{0}=0$, thus showing that a deformation is not favoured; for α greater than a value α_{c}, which depends on the parameters $u_{\text {max }}$ (or ε_{1}) and ρ_{K}, the minimum of $\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)$ lies at $\theta_{0} \neq 0$, meaning that the distortion can be amplified. The first angle of rotation for which the minimum of the potential lies at $\theta_{0} \neq 0$ is taken as the critical angle α_{c}. For AZA9 we get a coarse grained $\alpha_{c}=48^{\circ}$ by inspection of $\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)$.

We get a finer analysis by minimisation of the bend potential (18) with respect to the amplitude 0_{0}, giving the equation (see Appendix A2)

$$
\begin{equation*}
\varepsilon_{1} \theta_{0} h_{\mathrm{b}}\left(\theta_{0}\right)+2 \cos (2 \alpha) J_{1}\left(2 \theta_{0}\right)=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{\mathrm{b}}\left(\theta_{0}\right)=\rho_{K}+1+\left(\rho_{K}-1\right) J_{0}\left(2 \theta_{0}\right) \tag{23}
\end{equation*}
$$

and with ε_{1} given by (21). Equation (22) is a balance of an elastic and a magnetic term. Depending on the values for α, this equation has only the trivial solution $\theta_{0}=0$ or two more solutions $\pm \theta_{0} \neq 0$. This can be easily seen by solving (22) graphically: plotting the first (elastic) term and minus the second (magnetic) term as a function

Figure 4. Plot of the bend potential $\Phi_{\alpha}^{\mathbf{b}}\left(\theta_{0}\right)$ given by (18) (only the negative part is shown and the physical range of θ_{0} lies between -90° and 90°) for several values of the rotation angle α, with $u_{\text {max }}=3.0$ and $\rho_{K}=0.3$ (obtained in $\S 2$ for the polymer AZA9 for which $\chi_{a}>0$): (a) $\alpha=0^{\circ}$; (b) $\alpha=40^{\circ} ;(c) \alpha=48^{\circ} ;(d) \alpha=60^{\circ} ;(e) \alpha=90^{\circ}$. This figure reminds us of a second order phase transition, with α as the external parameter and θ_{0} as the order parameter. An analysis based on a phase transition analogy is presented in $\S 4$. A critical angle of rotation x_{c} separates the symmetrical 'phase' with $\theta_{0}=0$ from the unsymmetrical 'phase' with $\theta_{0} \neq 0$ (see also figure 5). The above values of the parameters $u_{\text {max }}$ and ρ_{K} give $\alpha_{R}=48^{\circ}$, determined by inspection of $\boldsymbol{\Phi}_{x}^{b}\left(\theta_{0}\right)$.
of θ_{0} (for $\theta_{0} \geqslant 0$ for simplicity), there is a nontrivial solution if the two curves intersect at some $\theta_{0} \neq 0$, as can be seen in figure 5 , again for AZA9. The first angle of rotation which produces such a solution is taken as the critical angle, giving for AZA9 a finer grained $\alpha_{c}==$ 47.5° (not shown in the figure). No solutions with $\theta_{0} \neq 0$ are found for $\chi_{\mathrm{a}}>0$ and $\alpha<45^{\circ}$, or for $\chi_{\mathrm{a}}<0$ and $\alpha>45^{\circ}$. In the case $\chi_{\mathrm{a}}>0$, solutions of (22) are found with α_{c} up to $\approx 90^{\circ}$, and with α_{c} down to $\approx 0^{\circ}$ for $\chi_{\mathrm{a}}<0$. This is in agreement with experimental results for lyotropic low molecular weight nematics with negative χ_{a}, where measurement of the critical angle gives 20° for DSCG in water [5] and 25° for DSI in water [16]; results for lyotropic polymer nematics with positive χ_{a} ($\mathrm{PBDG} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) give critical angles up to 50° for different polymer concentrations [23] and results for 5 CB $\left(\chi_{a}>0\right)$ give $\alpha_{c}=85^{\circ}$ [24]. Focusing on the case $\chi_{a}>0$, from the plot of the elastic term of (22) for a given $u_{\max }$, increasing ρ_{K} increases the initial slope of the curve, and thus increases α_{c}; a similar analysis shows that for a given ρ_{K}, decreasing $u_{\text {max }}$ increases α_{c}. A picture of α_{c} as a function of these parameters can be seen in figure $6(a)$ with the help of a phase transition analogy presented below.

The second ansatz for the distortion of the nematic director will be a splay-bend mode, replacing in (14) for Ω

$$
\begin{equation*}
\Omega=q_{x} x+q_{z} z \tag{24}
\end{equation*}
$$

Following similar calculations as for the bend case, the
reduced mean free energy density can be written as

$$
\begin{align*}
\Phi_{\alpha}^{\mathrm{sb}}\left(\theta_{0}\right)= & \frac{1}{2} \varepsilon_{1} \theta_{0}^{2}\left[g_{\mathrm{b}}\left(\theta_{0}\right)+\rho_{q}^{2} g_{\mathrm{s}}\left(\theta_{0}\right)\right] \\
& -\left[1+\cos (2 \alpha) J_{0}\left(2 \theta_{0}\right)\right] \tag{25}
\end{align*}
$$

with $g_{b}\left(\theta_{0}\right)$ given by (19) and

$$
\begin{align*}
g_{\mathrm{s}}\left(\theta_{0}\right) & =\rho_{K}+1-\left(\rho_{K}-1\right) \frac{J_{1}\left(2 \theta_{0}\right)}{\theta_{0}} \tag{26}\\
\rho_{q} & =q_{x} / q_{z} \tag{27}
\end{align*}
$$

and with ε_{1} now related to $u_{\text {max }}$ by

$$
\begin{equation*}
\varepsilon_{1}=\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{1}{1+\rho_{q}^{2}} \tag{28}
\end{equation*}
$$

In the limit of zero splay, $\rho_{q} \rightarrow 0$, equation (25) reduces to (18) and (28) to (21) for the bend case as expected. The plot of the splay-bend potential $\Phi_{\alpha}^{\mathrm{sb}}\left(\theta_{0}\right)$ given by (25-28) gives curves similar to those shown in figure 4, now with the extra parameter ρ_{q}. Inspection of $\Phi_{\alpha}^{\mathrm{sb}}\left(\theta_{0}\right)$ shows that for the parameters of AZA9, the critical angle α_{c} is shifted for higher values with increasing $\rho_{q}: \rho_{q}=$ 0.5 gives $\alpha_{c}=49^{\circ}, \rho_{q}=1$ gives $\alpha_{c}=51^{\circ}$, all these values being consistent with results from magnetic reorientation experiments for this PLC [31]. The analysis hereafter will show, however, that α_{c} can also decrease with increasing ρ_{q}. This can be seen by minimising the splay-bend potential $\Phi_{x}^{\text {sb }}\left(\theta_{0}\right)$ with respect to θ_{0}, giving

Figure 5. The equation (22) is solved graphically: curve 1 is the first (elastic) term $y=\varepsilon_{1} \theta_{0} h_{\mathrm{b}}\left(\theta_{0}\right)$ for the same parameters of figure $4\left(\chi_{\mathrm{a}}>0, \rho_{q}=0, u_{\max }=3.0\right.$ and $\left.\rho_{K}=0.3\right)$ and curve 2 is minus the second (magnetic) term $y=-2 \cos (2 \alpha) J_{1}\left(2 \theta_{0}\right)$ for the following values of the rotation angle: $(a) \alpha=0^{\circ} ;(b) \alpha=40^{\circ} ;(c) \alpha=60^{\circ} ;(d) \alpha=90^{\circ}$. (a) and (b) show only the solution $\theta_{0}=$ 0 , while (c) and (d) show another solution at $\theta_{0} \neq 0$. For $\chi_{a}<0$ the magnetic lerm in (22) is negative and the figure should be read backwards.

Figure 6. Phase diagrams for the bend potential $\Phi_{\alpha}^{\mathbf{b}}\left(\theta_{0}\right)$. (a) From (42a) with $\chi_{\mathrm{a}}>0$ we get α_{c} as a function of ρ_{K} with $u_{\text {max }}$ as a parameter. (b) From (42b) we get α_{c} as a function of $x=K_{3} q_{z}^{2} / \chi_{\mathrm{a}} H^{2}$; at $x=1$ the curve goes to infinity for $\chi_{\mathrm{a}}>0$ and to zero for $\chi_{\mathrm{a}}<0$.
the equation

$$
\begin{equation*}
\varepsilon_{1} \theta_{0}\left[h_{\mathrm{b}}\left(\theta_{0}\right)+\rho_{q}^{2} h_{\mathrm{s}}\left(\theta_{0}\right)\right]+2 \cos (2 \alpha) J_{1}\left(2 \theta_{0}\right)=0 \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{\mathrm{s}}\left(\theta_{0}\right)=\rho_{K}+1-\left(\rho_{K}-1\right) J_{0}\left(2 \theta_{0}\right) \tag{30}
\end{equation*}
$$

and with $h_{\mathrm{b}}\left(\theta_{0}\right)$ and ε_{1} given by (23) and (28), respectively. Following the same graphical method as for the bend case, we observe that α_{c} increases with increasing ρ_{q} for $0<\rho_{K}<1$, and decreases with increasing ρ_{q} for $\rho_{K}>1$. This again can be pictured with the help of a phase transition analogy as shown in figure $7(b)$. This is in agreement with the known result that bend distortions are favoured for $K_{3} / K_{1}<1$ (in the infinite chain limit, $K_{3} / K_{1} \rightarrow 0$ [29] and splay is forbidden), while for $K_{3} / K_{1}>1$ splay is favoured.

Our third ansatz for the distortion will be a twist--bend mode, corresponding to an out of plane component for \mathbf{q}, which now gives for Ω in (14):

$$
\begin{equation*}
\Omega=q_{y} y+q_{z} z \tag{31}
\end{equation*}
$$

(a)

(b)

Figure 7. Phase diagrams from equation (43) for the splaybend potential $\Phi_{a}^{\mathrm{sb}}\left(\theta_{0}\right)$ with $\chi_{\mathrm{a}}>0$ in the ($\rho_{\mathrm{K}}, \alpha_{\mathrm{c}}$) plane: (a) with $u_{\max }$ as a parameter and $\rho_{q}=1$; (b) with ρ_{q} as a parameter and $u_{\text {max }}=2$, showing that α_{c} increases with increasing ρ_{q} for $0<\rho_{K}<1$ and decreases with increasing ρ_{q} for $\rho_{K}>1$.

Following the same steps as before, the calculation for the reduced mean free energy density gives

$$
\begin{equation*}
\Phi_{\alpha}^{\mathrm{tb}}\left(\theta_{0}\right)=\varepsilon_{2} \theta_{0}^{2}+\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right) \tag{32}
\end{equation*}
$$

where $\Phi_{\alpha}^{\mathrm{b}}\left(\theta_{0}\right)$ is the bend potential given by (18) and

$$
\begin{equation*}
\varepsilon_{2}=\frac{K_{2} q_{y}^{2}}{\chi_{\mathrm{a}} \mathbf{H}^{2}} \tag{33}
\end{equation*}
$$

is a twist elastics to magnetic energy ratio arising from the introduction of the out of plane component of the wavevector. This ratio is related to the reduced wavelength $u_{\max }$ by

$$
\begin{equation*}
\varepsilon_{2}=\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{\left(K_{2} / K_{1}\right) \rho_{q}^{2}}{1+\rho_{q}^{2}} \tag{34}
\end{equation*}
$$

where now ρ_{q} is given by

$$
\begin{equation*}
\rho_{q}=q_{y} / q_{z} \tag{35}
\end{equation*}
$$

Equation (32) with the relations (18), (19), (28), (34) and (35) gives for the twist-bend potential

$$
\begin{align*}
\Phi_{x}^{\mathrm{tb}}\left(\theta_{0}\right)= & \left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{1}{1+\rho_{q}^{2}} \theta_{0}^{2}\left[\frac{1}{2} g_{\mathrm{b}}\left(\theta_{0}\right)+\frac{K_{2}}{K_{1}} \rho_{q}^{2}\right] \\
& -\left[1+\cos (2 \alpha) J_{0}\left(20_{0}\right)\right] \tag{36}
\end{align*}
$$

In the limit of zero twist, $\rho_{q} \rightarrow 0$, equation (36) reduces to (18). The plot of $\Phi_{\alpha}^{\mathrm{tb}}\left(\theta_{0}\right)$ again gives curves similar to those shown in figure 4 , showing a critical angle depending on four parameters: $u_{\max }, \rho_{K}=K_{3} / K_{1}, K_{2} / K_{1}$ and $\rho_{q}=q_{y} / q_{z}$. Minimising the potential (36) with respect to θ_{0} gives the equation

$$
\begin{gather*}
\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{1}{1+\rho_{q}^{2}} \theta_{0}\left[h_{\mathrm{b}}\left(\theta_{0}\right)+2 \frac{K_{2}}{K_{1}} \rho_{q}^{2}\right] \\
+2 \cos (2 x) J_{1}\left(2 \theta_{0}\right)=0 \tag{37}
\end{gather*}
$$

with $h_{\mathrm{b}}\left(\theta_{0}\right)$ given by (23). Following the same graphical method as for the preceding cases, we conclude that, for given $u_{\max }, \rho_{q}$ and ρ_{K}, α_{c} increases with increasing K_{2} / K_{1}. The influence of ρ_{q} is harder to understand than the splay-bend case, since the elastic term in (37) depends on two elastic ratios, K_{3} / K_{1} and K_{2} / K_{1} : while for $K_{2} / K_{1}<x_{c}$, where x_{c} is a critical ratio of $K_{2} / K_{1}, \alpha_{c}$ decreases with increasing ρ_{q}, for $K_{2} / K_{1}>x_{c}, \alpha_{c}$ increases with increasing ρ_{q}, and x_{c} increases with increasing K_{3} / K_{1} with the law $x_{\mathrm{c}} \propto K_{3} / K_{1}$. Thus both anisotropies play a role in the twist-bend instability driven reorientation by affecting the critical angle. A study based on a phase transition analogy (see $\S 4$) helps to clarify the ρ_{q} dependence of α_{c} : for $K_{3} / K_{2}<1, \alpha_{c}$ increases with increasing ρ_{q} (increasing the twist component of the distortion), while for $K_{3} / K_{2}>1, \alpha_{c}$ decreases with increasing ρ_{q} (see figure $8(a)$), showing that bend distortions are favoured for $K_{3} / K_{2}<1$, while for $K_{3} / K_{2}>1$ twist is favoured.

4. Results from a phase transition analogy

The plot of the potentials $\Phi_{\alpha}^{\mathrm{sb}}\left(\theta_{0}\right)$ and $\Phi_{\alpha}^{\mathrm{tb}}\left(\theta_{0}\right)$, as shown in figure 4 for the special case $\rho_{q}=0$, remind us of a second order phase transition, with the angle α playing the role of the external parameter and the value of the amplitude θ_{0}, corresponding to the minimum of the potential, Θ, the role of the order parameter. As in second order phase transitions [30], the order parameter vanishes continuously at $\alpha=\alpha_{c}$: for $\chi_{a}>0, \Theta$ continuously decreases by decreasing the rotation angle, going to zero for $\alpha \rightarrow \alpha_{c}$. The symmetrical 'phase' with $\Theta=0$ is unstable for $\alpha<\alpha_{c}$. The amplitude θ_{0} plays the same role of an order parameter as for the aperiodic magnetic Fréedericksz transition, which is also analogous to a second order phase transition [26]. This analogy suggests the use of the I andau theory of second

Figure 8. Phase diagram corresponding to equation (44) in the ($K_{3} / K_{2}, \alpha_{c}$) plane: (a) with ρ_{q} as a parameter, for $u_{\text {max }}=2$ and $K_{2} / K_{1}=0 \cdot 2$, showing that α_{c} increases with increasing ρ_{q} for $K_{3} / K_{2}<1$ and decreases with increasing ρ_{q} for $K_{3} / K_{2}>1$; (b) with K_{2} / K_{1} as a parameter, for $u_{\max }=2$ and $\rho_{q}=1$.
order phase transitions as an approximation to study the behaviour of the system near the critical angle. This theory should give a good approximation since $\Theta \rightarrow 0$ when $\alpha \rightarrow \alpha_{c}$. Following the usual Landau approach, we expand the appropriate potential in a power series of θ_{0} up to the fourth order.

$$
\begin{equation*}
\Phi_{\alpha}\left(\theta_{0}\right)=\Phi_{0}+\frac{a}{2} \theta_{0}^{2}+\frac{b}{4} \theta_{0}^{4}+O\left(\theta_{0}\right) \tag{38}
\end{equation*}
$$

with

$$
\begin{equation*}
\Phi_{0}=-(1+\cos 2 x) \tag{39}
\end{equation*}
$$

In (38), the odd-order terms vanish identically due to the symmetry of the problem $\left(\theta_{0}\right.$ is physically equivalent to $-\theta_{0}$). For the bend potential $\Phi_{x}^{\mathbf{b}}\left(\theta_{0}\right)$ given by (18), we have

$$
\begin{align*}
& a=2\left(\varepsilon_{1} \rho_{K}+\cos 2 \alpha\right) \tag{40}\\
& b=\varepsilon_{1}\left(1-\rho_{K}\right)-\cos 2 \alpha \tag{41}
\end{align*}
$$

The transition points are determined by the equation $a=0$. At this point, $\alpha=\alpha_{c}$. The coefficient a can be written, using equation (21), as a function of the parameters $u_{\text {max }}$ and ρ_{K}, and the equation becomes

$$
\begin{equation*}
\cos 2 \alpha_{\mathrm{c}}=-\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \rho_{K} \tag{42a}
\end{equation*}
$$

or, using (20) with $q \equiv q_{z}$

$$
\begin{equation*}
\cos 2 \alpha_{\mathrm{c}}=-\frac{K_{3}}{\chi_{\mathrm{a}}} \frac{q_{z}^{2}}{\mathbf{H}^{2}} \tag{42b}
\end{equation*}
$$

From (42a) we get lines of transition points in the (ρ_{K}, α_{c}) plane with $u_{\text {max }}$ as a parameter, as shown in figure $6(a)$. From equation ($42 b$) we get a phase diagram in the $\left(K_{3} q_{z}^{2} / \chi_{\mathrm{a}} \mathbf{H}^{2}, \alpha_{c}\right)$ plane as shown in figure $6(b)$. This equation tells us that, in the Landau approximation, the important quantity at the transition point is the ratio of the (bend) elastic to the magnetic energy. At the transition point, this equation implies that $\chi_{a}>0 \Rightarrow \alpha_{c}>45^{\circ}$, and $\chi_{\mathrm{a}}<0 \Rightarrow \alpha_{\mathrm{c}}<45^{\circ}$. From figure $6(b)$ we can see that in the case $\chi_{a}>0$ the condition for $\alpha_{c}<90^{\circ}$ is $\chi_{\mathrm{a}} \mathbf{H}^{2}>K_{3} q_{z}^{2}$. For the parameters of the polymer AZA 9 , this gives a critical field $H_{c}=4.6 \mathrm{kG}$. The actual magnetic reorientation experiment with this sample was performed under a field of 21.4 kG , well above H_{c}.

The transition at $a=0$ is second order if $b>0$ and first order if $b<0$. For $\chi_{a}>0$ and $\rho_{K}<1$, or $\chi_{a}<0$ and $\rho_{K}>1, b$ is always positive at the transition point, where $\alpha=\alpha_{c}$. This should be the case for polymers with long flexible chains $\left(\rho_{K}<1\right)$ and $\chi_{\mathrm{a}}>0$, or for LMWLC with $\rho_{K}>1$ and $\chi_{\mathrm{a}}<0$. To investigate the possibility $b<0$ in the two other cases, we analyse the tricritical point defined by $a=b=0$. This equation gives $\varepsilon_{1}=0$, which by (20) means that the tricritical point is attained asymptotically at vanishingly small K_{1} or \mathbf{q}. This means that the transition is always second order.

Similar conclusions are reached from the analysis of the splay-bend and twist-bend cases, as expected on purely physical grounds. We give only the results leading to figures 7 and 8 . For the splay-bend case, at the transition point, we get from the equation $a=0$ with $\rho_{q}=q_{x} / q_{z}:$

$$
\begin{equation*}
\cos 2 \alpha_{\mathrm{c}}=-\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{\rho_{q}^{2}+\rho_{K}}{\rho_{q}^{2}+1} \tag{43}
\end{equation*}
$$

The phase diagram from (43) in the (ρ_{K}, α_{c}) plane is shown in figure 7 , with $u_{\max }$ as a parameter in figure $7(a)$ and with ρ_{q} as a parameter in figure $7(b)$ (sce discussion following equation (29)). For the twist bend case, the
equation $a=0$ with $\rho_{q}=q_{y} / q_{z}$ becomes

$$
\begin{equation*}
\cos 2 \alpha_{c}=-\left(\frac{\pi}{2} \frac{1}{u_{\max }}\right)^{2} \frac{K_{2} / K_{1}}{\rho_{q}^{2}+1}\left(\frac{K_{3}}{K_{2}}+\rho_{q}^{2}\right) \tag{44}
\end{equation*}
$$

Figure 8 shows the phase diagram corresponding to equation (44) in the ($K_{3} / K_{2}, \alpha_{c}$) plane with (a) ρ_{q} as a parameter (see discussion following equation (37)) and (b) K_{2} / K_{1} as a parameter.

5. Discussion

We can get an estimation of the expected range of values for the critical angle α_{c}. We focus on the case $\chi_{\mathrm{a}}>0$ and start with $\rho_{q}=0$. The critical angle increases with increasing ρ_{K} and with decreasing $u_{\max }$, as shown in figure 6 . We will first estimate a minimum value for this latter parameter. By inspection of figure 1 (which gives $u_{\max }$ for the case $\rho_{K}=1$), we choose for this value $u_{\text {max }} \cong 2$. From equation ($12 a$), we get the corresponding minimum wavelength $\lambda_{\min } \cong 8 \xi_{1}$. For polymers, we take a strong field $\mathbf{H}=20 \mathrm{kG}, \quad \chi_{\mathrm{a}} \approx 10^{-7}$ (CGS) and $K_{1} \approx 10^{-5}$ dynecm. This gives from ($4 b$), $\xi_{1} \cong 5 \mu \mathrm{~m}$ and we get $\lambda_{\min } \cong 40 \mu \mathrm{~m}$. We choose for a maximum value $u_{\text {max }} \cong 20$, corresponding to $\lambda_{\text {max }} \cong 400 \mu \mathrm{~m}$. For flexible chains, $\rho_{K}<1$ and choosing $0.3<\rho_{K}<0.7$ we get from equation (22) $45^{\circ}<\alpha_{c}<57^{\circ}$ (for a picture, in the Landau approximation, the reader should refer to figure $6(a))$, setting an upper value for α_{c} consistent with experimental results for flexible polymers [23,25,31]. Adding a splay component to the distortion of the director field up to $\rho_{q}=1$, from equation (25), increases the estimated upper value of α_{c} to $\approx 60^{\circ}$ (for hard rods $\rho_{K}>1$ and α_{c} would decrease) (for a picture, the reader may refer to figure 7). Adding a twist component will decrease α_{c}, since $K_{3} / K_{2}>1$ is always expected (a picture is given in figure $8(a)$). For LMWLC, we take $K_{1} \approx 10^{-6}$ dynecm and $\chi_{\mathrm{a}} \approx 10^{-7}$ (CGS), which gives for a field $\mathbf{H}=20 \mathrm{kG}$ $\xi_{1} \cong 2 \mu \mathrm{~m}$ and $\lambda_{\text {min }} \cong 16 \mu \mathrm{~m}$, and for a field $\mathbf{H}=2 \mathrm{kG}$ $\xi_{1} \cong 16 \mu \mathrm{~m}$ and $\lambda_{\text {min }} \cong 130 \mu \mathrm{~m}$. Taking $1<\rho_{K}<2$, from equation (22) with $u_{\max }=2, \alpha_{c}$ can go up to $\approx 90^{\circ}$ (a picture is given in figure $6(a)$). The critical angle of rotation reported for 5 CB [24] is 85° for working fields $\mathbf{H}=2 \mathrm{kG}$. For this material $\rho_{K} \cong 1.4$ [33] and from equation (22) for $\alpha_{c}=85^{\circ}$ we get $u_{\text {max }}=1.88$ (see figure $6(a)$), which gives, from ($12 a$) with $\xi_{1} \cong 16 \mu \mathrm{~m}$, $\lambda \cong 120 \mu \mathrm{~m}$, of the order of our estimation for $\lambda_{\text {min }}$ for a field of 2 kG . Wavelengths of this magnitude are found for 5 CB in the electrically driven splay Fréedericksz transition [14], while $\lambda \approx 15 \mu \mathrm{~m}$ are found in the periodic deformed hybrid alignment of the nematic cell of 5 CB [34] for cell thickness less than $0.15 \mu \mathrm{~m}$. Since in this case the role of the field is formally played by the cell thickness [34], this seems to correspond to the strong
field behaviour in our problem. Adding a splay or a twist component will only decrease α_{c} since $\rho_{K}>1$ and $K_{3} / K_{2}>1$. Optical measurements of the wavelength and ρ_{q} in a sample during a magnetic reorientation experiment, together with the measurement of α_{c}, are of course necessary to check whether these results are quantitatively correct. In this case, equations (29) or (37), via the measurement of α_{c} and of λ and ρ_{q} by optical techniques, can provide $u_{\max }$ and ρ_{K} (and K_{1} and K_{3} as explained at the end of §2) without making use of the NMR spectra simulation technique. In the case $\chi_{a}<0$, a description in terms of $u_{\text {max }}$ is no longer adequate since ξ_{1} becomes complex, but the prediction of our model that in this case α_{c} is in the range $0^{\circ}-45^{\circ}$ is consistent with the results for α_{c} reported in the literature (see discussion following equation (22)).

Although our model seems to work qualitatively well both for PLC and LMWLC, our static study of the critical angle is probably a poor approximation for LMWLC, with short relaxation times (seconds or milliseconds), and should be a better approximation for PLC where, due to their high viscosities, τ_{0} is orders of magnitude higher than the relaxation times for LMWLC, and increases rapidly with the degree of polymerisation (minutes to hours) [18-23, 25, 32]. Although arguments based only on elastic energy are incomplete, numerical results for the splay Fréedericksz transition [4] indicate that the bend distortion is mediated almost entirely by the bend restoring force, none of the viscosities having much effect on it. When the bend distortion is the leading contribution, which should be the case in the bulk for high fields [4], equation (22), or the Landau approximation ($42 a$), should thens give reasonable results.

6. Conclusions

In the first part of this work, we have shown that the bend reorientational equation (1) leads to a pattern of splay-bend walls, and we have studied its dependence on the ratio K_{3} / K_{1} and on the reduced wavelength $u_{\text {max }}$ (12a). We have also shown that with appropriate NMR experiments we can get this elastic ratio and $u_{\max }$ and, finally, that with the measurement of the wavelength we can get both K_{1} and K_{3}.

In the second part of this work, we have shown that the minimisation of a distortion Frank free energy can explain the existence of a critical angle separating the uniform director magnetic reorientation regime from the distorted director reorientation regime. We have shown evidence for the dependence of this critical angle on the elastic anisotropy and $u_{\max }$, thus allowing for the calculation of values for α_{c} using the NMR experimental results obtained in the first part. We have used different trial distortion wavevectors to study the dependence of α_{c} on
the elastic ratios. This dependence is simple to visualise with the help of a second order phase transition analogy, where the angle of rotation plays the role of the external parameter and the value of the amplitude of the distortion plays the role of the order parameter. For a splay-bend mode, we conclude that α_{c} increases with increasing splay component of the distortion for $K_{3} / K_{1}<1$ and decreases with increasing splay for $K_{3} / K_{1}>1$. For a twist-bend mode, α_{c} increases with increasing twist component of the distortion for $K_{3} / K_{2}<1$, and decreases with increasing twist for $K_{3} / K_{2}>1$. Depending on these ratios, critical angles $45^{\circ}<\alpha_{c}<90^{\circ}$ are predicteds for materials with positive anisotropy of the magnetic susceptibility χ_{a} and $0^{\circ}<\alpha_{\mathrm{c}}<45^{\circ}(\bmod \pi / 2)$ for materials with $\chi_{\mathrm{a}}<0$, in agreement with published data.

The authors wish to thank Dr F. Volino for helpful comments. This work was partly financed by JNICT of Portugal under research contract $\mathrm{PBIC} / \mathrm{C} / \mathrm{CEN} /$ 1049/93 and by the EU under HCM-Network CHRX-CT93-0282.

Appendix

(A1) The calculation of (16) with (15b) is easily done with the help of normal trigonometric relations from which we get the result

$$
\begin{aligned}
F^{\mathrm{b}}= & \frac{1}{8}\left(K_{1}+K_{3}\right) \mathbf{q}^{2} \theta_{0}^{2}+\frac{1}{4}\left(K_{3}-K_{1}\right) \frac{1}{2 \pi} I_{1} \\
& -\frac{1}{4} \chi_{\mathrm{a}} \mathbf{H}^{2}\left(1+\frac{\cos 2 \alpha}{2 \pi} I_{2}+\frac{\sin 2 \alpha}{2 \pi} I_{3}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& I_{1}=\int_{0}^{2 \pi} \cos \left(2 \theta_{0} \sin \Omega\right) \cos ^{2} \Omega \mathrm{~d} \Omega \\
& I_{2}=\int_{0}^{2 \pi} \cos \left(2 \theta_{0} \sin \Omega\right) \mathrm{d} \Omega \\
& I_{3}=\int_{0}^{2 \pi} \sin \left(2 \theta_{0} \sin \Omega\right) \mathrm{d} \Omega
\end{aligned}
$$

These integrals are evaluated with the help of tables of integrals as found in [$35(a)$]. The integral I_{1} is cevaluated in four steps. Putting $20_{0}=z$, we get

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \cos (z \sin \Omega) \cos ^{2} \Omega \mathrm{~d} \Omega=\frac{\pi}{2} \frac{1!!}{z} J_{1}(z)=\frac{\pi}{2} \frac{J_{1}(z)}{z} \\
& \int_{\pi / 2}^{\pi} \cos (z \sin \Omega) \cos ^{2} \Omega \mathrm{~d} \Omega \\
& \quad=\int_{0}^{\pi / 2} \cos (z \sin (\Omega+\pi / 2)) \cos ^{2}(\Omega+\pi / 2) \mathrm{d} \Omega
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \cos (z \cos \Omega) \sin ^{2} \Omega \mathrm{~d} \Omega \\
& =\frac{\pi^{1 / 2}}{z} \Gamma\left(\frac{3}{2}\right) J_{1}(z)=\frac{\pi}{2} \frac{J_{1}(z)}{z}
\end{aligned}
$$

and similarly we get the results for the two other steps, giving

$$
I_{1}=2 \pi \frac{J_{1}(z)}{z}
$$

Using a similar method for I_{2} we get

$$
\begin{aligned}
I_{2} & =\int_{0}^{\pi} \cos (z \sin \Omega) \mathrm{d} \Omega+\int_{0}^{\pi} \cos (z \sin (\Omega+\pi)) \mathrm{d} \Omega \\
& =2 \int_{0}^{\pi} \cos (z \sin \Omega) \mathrm{d} \Omega=2 \pi J_{0}(z)
\end{aligned}
$$

and for I_{3}

$$
I_{3}=\int_{0}^{\pi} \sin (z \sin \Omega) \mathrm{d} \Omega+\int_{0}^{\pi} \sin (z \sin \Omega+\pi) \mathrm{d} \Omega=0
$$

Putting these results in the above expression for F^{b} we get (17).
(A2) Equation (22) with (23) is obtained by differentiating (18) with respect to θ_{0}, putting $2 \theta_{0}=z$ and using [35(b)]:

$$
\frac{\mathrm{d}}{\mathrm{~d} z}\left[z J_{1}(z)\right]=z J_{0}(z) \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} z} J_{0}(z)=-J_{1}(z)
$$

References

[1] (a) Brochard, F., Pieranski, P., and Guyon, E., 1972, Phys. Rev. Lett., 28, 1681; (b) Pieranski, P., Brochard, F., and Guyon, E, 1973, J. Phys., 34, 35.
[2] Guyon, E., Meyer, R., and Salan, J., 1979, Mol. Cryst. liq. Cryst., 54, 261.
[3] (a) Lonberg, F., Fraden, S., Hurd, A., and Meyer, R. B., 1984, Phys. Rev. Lett., 52, 1903; (b) Lonberg, F., and Meyer, R. B., 1985, Phys. Rev. Lett., 55, 718.
[4] (a) Hurd, A. J., Fraden, S., Lonberg, F., and Meyer, R. B., 1985, J. Phys., 46, 905; (b) Fraden, S., Hurd, A. J., Meyer, R. B., Cahoon, M., and Caspar, D. L. D., 1985, J. Phys. (Paris) Colloq., 46, C3-85.
[5] Hui, Y., Kuzma, M., San Miguel, M., and Labes, M., 1985, J. chem. Phys., 83, 288.
[6] (a) KuzMa, M., 1986, Phys. Rev. Lett., 57, 349; (b) Rose, D., and Kuzman, M., 1986, Mol. Cryst. liqCryst., 4, 39.
[7] Miraldi, E., Oldano, C., and Strigazzi, A., 1986, Phys. Rev. A, 34, 4348.
[8] (a) Kini, U., 1986, J. Phys., 47, 693; (b) 1991, Liq. Cryst., 10, 597.
[9] (a) McClymer, J., and Labes, M., 1987, Mol. Cryst. liq. Cryst., 144, 275; (b) McClymer, J., Labes, M., and Kuzma, M., 1988, Phys. Rev. A, 37, 1388.
[10] San Miguel, M., and Sagués, F., 1987, Phys. Rev. A, 36, 1883.
[11] Frisken, B., and Palffy-Muhoray, P., 1989, Phys. Rev. $A, 39,1513$.
[12] Srajer, G., Fraden, S., and Meyer, R. B., 1989, Phys. Rev. A, 39, 4828.
[13] Rex, A. D., and Denn, M. M., 1989, Liq. Cryst., 4, 409.
[14] (a) Buka, A., and Kramer, L., 1992, J. Phys. II France, 2, 315; (b) 1992, Phys. Rev. A, 45, 5624.
[15] Galatola, P., Oldano, C., and Rajteri, M., 1994, Phys. Rev. E, 49, 1458.
[16] Golovanov, A. V., and Kaznacheev, A. V., 1994, 15th ILLC, Budapest.
[17] Kilian, A., 1994, Phys. Rev. E, 50, 3774.
[18] Schwenk, N., and Spiess, H. W., 1993, J. Phys. II France, 3, 865.
[19] Martins, A. F., Esvault, P., and Volino, F., 1986, Phys. Rev. Lett., 57, 1745.
[20] Esnallit, P., Casquilho, J. P., Volino, F., Martins, A. F., and Blumstein, A., 1990, Liq. Cryst., 7, 607.
[21] Casquilho, J. P., Esnault, P., Volino, F., Mauzac, M., and Richard, H., 1990, Mol. Cryst. liq. Cryst., 180B, 343.
[22] Gonçalves, L. N., Casquilho, J. P., Figueirinhas, J., Cruz, C., and Martins, A. F., 1993, Liq. Cryst., 14, 1485.
[23] Filas, R. W., 1978, Mesomorphic Polymers and Polymerization in Liquid Crystalline Media, edited by A. Blumstein, ACS Symposium Series 74 (Washington DC: ACS), Chap. II.
[24] Gotzig, H., Grunenberg-Hassanein, S., and NOACK, F., 1994, Z. Naturforsch., 49a, 1179.
[25] Hughes, J. R., Luckhurst, G. R., and Picken, S. J., 1994, 15th ILLC, Budapest.
[26] de Ginnes, P. G., 1975, The Physics of Liquid Crystals (Oxford: Clarendon Press).
[27] Sommerfeld, A., 1964, Classical Mechanics (Academic Press).
[28] Hancock, H., 1958, Elliptic Integrals (New York: Dover)
[29] Meyfr, R. B., 1982, Polymer Liquid Crystals, edited by A. Cifferi, W. R. Krigbaum and R. B. Meyer (New York: Academic Press), Chap. 6.
[30] (a) Landau and Lifshitz, 1980, Statistical Physics, Part 1 (Pergamon Press); (b) Huang, K., 1987, Statistical Mechanics, 2nd edition (Wiley)
[31] Esnallt, P., 1988, PhD thesis, Université Joseph Fouricr, Grenoble.
[32] Klein, T., Jun, H. X., Esnault, P., Blumstein, A., and Volino, F., 1989, Macromolecules, 22, 3731.
[33] (a) Madhusudana, N. V., and Pratibha, R., 1982, Mol. Cryst. liq. Cryst., 89, 249; (b) Skarp, K., Lagerwall, S. T., and Stebler, B., ibid., 60, 215.
[34] Sparavigna, A., Lavrentovich, O., and Strigazzi, A., 1994, Phys. Rev. E, 49, 1344.
[35] Gradshten, I. S., and Ryzhik, I. M., 1994, Tables of Integrals, Series and Products, 5th edition (Academic Press), (a) pp. 441-442 and 947; (b) p. 979.

[^0]: * Author for correspondence.

