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LIQUID CRYSTALS, 1996, VOL. 21, No. 5,  651-661 

On the influence of the Frank elasticity on the magnetic 
reorientation of nematic polymers 

by J. P. CASQUILHOt*, L. N. GONCALVES? and A. F. MARTINS1 
t Departamento de Fisica, 2 Dep. de Cizncias dos Materiais; 

Faculdade de CiCncias e Tecnologia, Universidade Nova de Lisboa, 
Quinta da Torre, 2825 Monte da Caparica, Portugal 

(Received 17 July 19Y5: in final form 22 April 1996; accepted 24 June 1996) 

We study the influence of the anisotropy of the Frank elastic constants on the magnetic 
reorientation of the nematic phase of polymer liquid crystals. In the magnetic reorientation 
following a 90' director rotation with respect to an aligning magnetic field, a pattern of 
inversion walls develops which depends on the relative magnitude of the elastic constants and 
the magnetic coherence length. We show how this dependence can be experimentally studied 
by proton NMR. The transition from a homogeneous director reorientation to a distorted 
director reorientation is theoretically studied as a function of the rotation angle tl. A critical 
angle of rotation ac shows up, and we study its dependence on the anisotropies K J K ,  and 
K J K , .  Depending on these ratios and on the wavelength of the distortion, critical angles 
45" < tl, < 90" are predicted for materials with positive anisotropy of the magnetic susceptibility 
za and 0" < a, < 45" (mod 4 2 )  for materials with xa < 0. Within the frame of a phase transition 
analogy, a Landau-like theory predicts the transition to be second order. 

1. Introduction 
The field induced instabilities in nematic liquid crystals 

have been a regularly visited subject of research over 
the last ten years, following the pioneering work of 
Brochard, Guyon and co-workers [ 1,2]. Most of this 
research has been developed in the framework of the 
Freedericksz transition in different geometries with a 
magnetic and/or an electric field [ 1-18]. Magnetic 
reorientational instabilities have also been studied by 
NMR [ 18-25]. In a magnetic reorientation experiment, 
a magnetic field is applied at an angle a to the director 
of a previously aligned sample. Equivalently, in the 
NMR experiments with polymer liquid crystals (PLC) 
reported here, the sample is rotated with respect to the 
magnetic field [ 19-23,251. For simplicity we will call a 
the rotation angle in referring to both cases. The sub- 
sequent evolution towards equilibrium of the director 
field is studied as a function of time, by optical or by 
NM R techniques. The experimental evidence for the 
field induced instabilities has been reported both for 
samples of low molecular weight liquid crystals 
(LMWLC) and PLC as a spatially periodic response to 
the applied field. When the sample is observed between 
crossed polarizers, the periodicity of the director field 
appears as a pattern of parallel stripes. 

In standard NMR experiments, the geometry is much 

*Author [or correspondence. 

less defined compared with that for the case of the 
Freedericksz transition, since the sample is put in a 
cylindrical tube without special surface treatment with 
a free surface. However, these experiments seem appro- 
priate to study bulk properties, since the NMR signal is 
proportional to the sample volume (a few mm3) and the 
effects of the boundaries reduce to distances of the order 
of the magnetic coherence length (a few microns). NMR 
magnetic reorientation experiments on nematic main 
chain polymer samples with xa > 0 for angles of rotation, 
with respect to the field H, of x < 45" and for x E n/2 
have been successfully simulated using Leslie equations 
for an infinite medium [19,20,22]. In the first case 
(a < 45"), the reorientational equation corresponds to a 
uniform director rotation towards equilibrium, while in 
the second case (a E x/2), the reorientational equation 
corresponds to a distorted periodic director evolution 
from an initial bend instability, with a flow perpendicular 
to the initial director no, as explained in [ 19, 201. There 
is also experimental evidence, both for Freedericksz 
transition and NMR magnetic reorientation experi- 
ments, that a critical angle of rotation x, separates the 
uniform director reorientation from the (instability 
driven) distorted director reorientation [ S ,  16,23,24]. 

In the first part of this work we will show that the 
bend reorientational equation leads to a pattern of 
splay-bend inversion walls. We will focus on the pattern 
dependence on the elastic anisotropy K 3 / K ,  and on a 
reduced wavelength u,,, defined below. Furthermore, 
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652 J. P. Casquilho et al. 

we will show that NMR is a sensitive tool to study this 
dependence. In the second part of this work, we will 
investigate theoretically the transition from the hom- 
ogeneous to the distorted director reorientation. The 
existence of a critical angle separating the two reorienta- 
tion regimes and its dependence on the elastic anisotropy 
and the reduced wavelength of the distortion will be 
demonstrated. 

2. Splay-bend inversion walls 
The magnetic field is set perpendicular to the initial 

homogeneously aligned director no through a sample 
rotation of x r n / 2  about an axis normal to no. The 
reorientational equation is a balance of the viscous, 
magnetic and elastic torques: 

ae 1 
y(O)----,H2sin28-K(0)=O at 2 (1) 

where 0 is the angle between the local director n(t) and 
the initial director no. In equation (1) y ( B )  is an effective 
viscosity depending on four Leslie viscosities [ 19,201, 
and with no set along the OZ axis, the elastic torque is 
given by 

with 

f ( O )  = K ,  sin2 0 + K ,  cos2 0 (3) 
The pattern of the instability generated structure is 

obtained through the resolution of the reorientational 
equation (1) in the limit t + m  (when ad/at-+O). In 
dimensionless form, it can be written 

d28 
du 

[ l - ( 1  -pK)COS2e], 

where u is a reduced distance: 

t1 is the splay magnetic coherence length: 

(4 b) 
and p K  is the ratio of the bend to the splay elastic 
constants: 

P K  = K 3 / K l  (4  c) 

We first look for solutions of (4) in the one constant 
approximation pK = 1: 

~ 2 n  I u I f  1 
~ + -sin28 = 0 
du2 2 ( 5 )  

This equation, for an infinite medium, with the boundary 
conditions 

f l ( O ) = O  and O(co)=n/2 (6) 

0(u) = 2 arc tan exp (u) - xi2 (7) 

has an aperiodic solution [26] 

corresponding to a Helfrich splay-bend wall, parallel to 
the field, of width defined as 2c1. Equation (5) also 
allows for periodic solutions. This can be easily seen 
noticing that this equation is identical to the equation 
of motion of the pendulum in reduced variables. For the 
pendulum we have 

d2d, _- dt2 - - w2 sin d, 

and in our case we have with q5 = 20, 

We can then import the results known from the pendu- 
lum motion 1271: equation ( 8  b) has a periodic solution 
with a wavelength given by 

i L  = 4(, K ( k )  (9) 
where K ( k )  is the complete elliptic integral of the first 
kind [28]: 

1 
k = sin - 

2 = sin O,,,, 

where Omax is the amplitude of the distortion. From (10) 
we see that 

limK = 4 2 ,  lim K = co 
(11) 

Omax + 0 Omax + nI2 

The first limit shows, together with (9), that A>,2x{,. 
The second limit, with (9 ) ,  means that a finite wavelength 
must correspond to an amplitude of the distortion 
smaller than 4 2 .  The integral (10) is plotted as a 
function of Omax in figure 1. 

We now turn to the general case pK # 1. We define as 
before the wall width as 2<,. We define the quantity 
urnax as the value of u given by (4a) for z = 44 .  Later 
we show that u,, is an NMR observable and that it 
can be simply related to the volume fraction of walls in 
the sample. The wavelength is given in terms of u,,, by 

( 12 a)  

and we see that u,,, is a reduced wavelength. The 
comparison of equations ( 12 a )  and (9) suggests that the 
quantity urn,, substitutes the function K ( k )  in dealing 

2 = 45, u,, 
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0 ' .  I 
4 5  90 

Figure 1. Plot of the integral K(O,,,) given by equation (10). 
This function represents also umx(Qmax) in the case 
p K  = 1 (see text). 

with the general case p K  # 1. In terms of the wave vector 
q we have the relation 

Equation (4) has been solved numerically by a shoot- 
ing method using the Runge-Kutta and Adams- 
Moulton fourth order algorithms. With boundary condi- 
tions (6), we get numerical solutions which in the case 
p K  = 1 reduces to Helfrich walls (see curve 1 of figure 2). 
With periodic boundary conditions O(u = 0) = O(u = 
2u,,,) = 0, we get periodic solutions corresponding to a 
K J K ,  dependent pattern of splay--bend walls (see curves 
2 and 3 of figure 2). 

8/ 

We have shown that equation (1) leads to splay-bend 
walls, which correspond to a pattern of parallel stripes 
perpendicular to the initial director. This pattern has 
been confirmed by optical observations on a main chain 
nematic PLC [20] and is in agreement with numerical 
results from the study of the splay FrCedericksz transition 
[4] which show that for high reduced magnetic fields 
(proportional to field x sample thickness) the stripe 
pattern is perpendicular to no. 

The experimental study of the pattern of inversion 
walls is conveniently made by NMR. Following [20-221, 
we will simulate the NMR spectral lineshape f(v) from 
the spectrum of the aligned monodomain fo(v), assuming 
that the spectra are determined by dipolar interactions 
and using the equation 

where P,(coscr) is the second Legendre polynomial and 
c( = 4 2  - O(u), where u is the reduced distance (4a) and 
u,, is the reduced wavelength given by ( 12 a), and with 
Q(u) given by the numerical solution of (4) with u,,, and 
p K  as fitting parameters. The NMR spectrum of the wall 
pattern was taken from reference [20] and refers to a 
nematic thermotropic main chain polymer labelled 
AZA9. A simulation is shown in figure 3. The evaluation 
of u,, and p x  by this technique depends on the lineshape 
of the central part of the spectrum as explained in [22]. 
Poor spectra will give poor results, mainly because there 
can be a few pairs of u,,, and p K  that give fits of similar 

- 1 0 -  

-30- 

-50- 

-70- 

-90-, 
I I I I I i I I 1 I I 1 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  

U 
Splay-bend walls as numerical solutions of equation (4). This equation has been solved numerically by the shooting 

method, fixing the initial slope of the curve (which is related to the parameter p K )  and the intersection with the u axis (which 
is using the Runge-Kutta and Adams-Moulton fourth order algorithms. Curve 1 is a solution with the boundary 
conditions ( 6 )  with p K  = 1, corresponding to a Helfrich-like wall as given by equation (7). Curves 2 and 3 correspond to 
periodic boundary conditions U(u = 0) = H(u = 2u,,,) = 0, with u,,, = 3.36 and p K  = 1 (curve 2), u,, = 3.25 and p K  = 
0.3 (curve 3). 

Figure 2. 
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654 J. P. Casquilho et ul. 

Figure 3. Simulation of the wall spectrum of polymer AZA9 
with equation (13) and numerical solutions of (4): 
curve - - -  fit with u,,, = 3.0 and p K  = 0.3. 

quality. although these two parameters do not compens- 
ate each other exactly for spectral simulation purposes. 
In the case of the spectrum shown in figure 3, the pair 
(urn,, = 3.0, p K  = 0.3) gave the best fit, but (urnax = 2.5, 
pa = 0.2) or (urn,, = 3.5, p K  = 0.5) gave similar results. 

Once ti,,, and p K  are known, the measurement of the 
wavelength can give full information about the elastic 
constants K ,  and K , ,  if xa is known, via the relations 
( 12 a) and (4  b,c). Using the results of [20], A E 60 pm 
and xaH2 = 35.5ergcrn-,, we get from the above first 
pair (urnax,pK) the results K ,  = 8.9 x lO-'dyne and 
K ,  = 2.7 x 10-'dyne, while from the second and third 
pairs we have, respectively, ( K ,  = 1.3 x dyne, 
K ,  = 2.6 x 10-6dyne) and ( K ,  = 6.5 x 1OP6dyne, K 3  = 

3.3 x 10 'dyne). These results are in good agreement 
with early data from spectral simulation using the time 
dependent equation (1) [ZO]. The advantage of this new 
method is that it allows the evaluation of the elastic 
constants independently of the Leslie viscosities which 
enter in ~ ( 0 ) .  

It is interesting to see that the volume fraction X ,  of 
walls in the sample can be simply related to the quantity 
urnax assuming that the distribution of thc wall pattern 
along the axis of the NMR sample tube is uniform and 
using equation ( 12 a): 

wall width 25, 1 x =  - 
- distance between walls A12 - u,,, 

This means that 1 < II,,, < cc, similarly to 
K ( k )  = zimdx(pK = 1 ) given by (10) as shown in figure 1. 

3. Critical angle of rotation 
In magnetic reorientation experiments as reported in 

[S, 16, 19. 20,23, 241. the nematic director reorients 

uniformly in space for rotation angles below the critical 
angle a,. Above xC, the director reorients inhomogen- 
eously, inducing backflow. This is a complex mechanism. 
ruled by the Leslie equations, where the whole set of 
Leslie viscosities and Frank elastic constants play an 
important role. Here we will only focus on the distortion 
of the director field once a wavevector q is selected. The 
study of the mechanism responsible for the selection of 
the wavevector q for given viscoelastic parameters and 
magnetic field is beyond the scope of this work. In what 
follows, we will assume that the system response is slow 
enough to validate a static analysis (see discussion of 
the limits of this approximation at the end of this 
section). For simplicity, we will consider only the planar 
director problem and two dimensional wavevectors. This 
should be a good approximation for thick samples in  
strong magnetic fields, since numerical results for the 
Frkedericksz transition [4] show that the general three- 
dimensional problem reduces to two dimensions for high 
reduced magnetic fields (proportional to field x sample 
thickness). 

Consider a bulk nematic monodomain previously 
aligned with a strong magnetic field H and then suddenly 
rotated so that the uniform director n, makes an angle 
c( with H. Our first ansatz for the response of the out of 
equilibrium nematic will be a harmonic distortion along 
the unperturbed director no, corresponding to a bend 
distortion. With n, along the OZ axis and OY the axis 
of the sample rotation, we have for the distorted director 

( 14) 

The corresponding distortion Frank free energy density 

n = (sin H,0. cos H ) ,  H = 0, sin Q. Q = qz 

[ 2 6 ]  is 

1 
fb(0) = ? ( K ,  sin28 + K ,  cos2 8) - 

1 
2 

- - x ~ H ~ c o s ~ ( O  - CY) (15a) 

or 

1 

2 
fb (Q)  = - [ K ,  sin2 (0, sin i2) 

+ K3cos2(HosinR)]q2H~cos '~~ 

(15 b) 
1 
2 

- - xaH2 cos2 (0 ,  sin Q - a)  

The interesting quantity for an infinite medium is the 
mean free energy density per wavelength: 

(16) 
1 

2n 
Fb = - fb(Q)dQ 
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The calculation gives the result 

where J ,  and J ,  are Bessel functions of the first kind 
(see Appendix A 1 ). We can rewrite ( 17) in dimensionless 
form: 

with 

and where @:(O, )  = 4Fb/zaH2, p K  is given by (4 c) and 

is a ratio of an elastic to magnetic energy. This quantity 
is easily related to the reduced wavelength u,,,,, with the 
help of equations (12 b) and (4 b): 

From the plot of the bend potential @:(do) for several 
values of the rotation angle a, with urnax (or E , )  and pK 
as parameters, a critical angle of rotation a, shows up, 
separating two different ranges of a, as shown in figure 4 
for the polymer AZA9: for za > 0, for values of a up to 
rC the minimum of @:(do)  lies at 8, = 0, thus showing 
that a deformation is not favoured; for a greater than a 
value ac, which depends on the parameters u,,, (or c l )  
and pK,  the minimum of @:(do)  lies at 0, # 0, meaning 
that the distortion can be amplified. The first angle of 
rotation for which the minimum of the potential lies at 
8, # 0 is taken as the critical angle a,. For AZA9 we get 
a coarse grained a, = 48" by inspection of @Z(e,). 

We get a finer analysis by minimisation of the bend 
potential (18) with respect to the amplitude O,, giving 
the equation (see Appendix A2) 

(22) 

(23) 

&1 OOhb(8,) + 2 cos ( 2a)JI (28,) = 0 

h b ( 4 l )  = P K  + 1 + ( P K  - 1)J,(28,) 

where 

and with E ,  given by (21). Equation (22) is a balance of 
an elastic and a magnetic term. Depending on the values 
for a, this equation has only the trivial solution 8, = 0 
or two more solutions ? 8, # 0. This can be easily seen 
by solving (22) graphically: plotting the first (elastic) 
term and minus the second (magnetic) term as a function 

d 
-2 -2 

e 

Figure 4. Plot of the bend potential @:(O,) given by ( 1  8) (only the negative part is shown and the physical range of 00 lies 
between -990" and 90") for several values of the rotation angle a, with u,, = 3-0 and p K  = 0.3 (obtained in $ 2  for the polymer 
AZA9 for which xa > 0): (a) M = 0"; (b) a = 40"; (c) a = 48"; ( d )  a = 60"; (e) a = 90". This figure reminds us of a second order 
phase transition, with a as the external parameter and 0, as the order parameter. An analysis based on a phase transition 
analogy is presented in $4. A critical angle of rotation rc separates the symmetrical 'phase' with 0, = 0 from the unsymmetrical 
'phase' with 0, # 0 (see also figure 5 ) .  The above values of the parameters u,,, and p K  give M, = 48", determined by inspection 
of a:(&). 
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of 0, (for O,,a 0 for simplicity), there is a nontrivial 
solution if the two curves intersect at some & # O ,  as 
can be seen in figure 5, again for AZA9. The first angle 
of rotation which produces such a solution is taken as 
the critical angle, giving for AZA9 a finer grained a, = 
47.5' (not shown in the figure). No solutions with 0, # 0 
are found for ?la >@ and a<45", or for xa < O  and 
CI > 45'. In the case X, > 0, solutions of (22) are found 
with il, up to ,e90°, and with x, down to .=O" for xa < 0. 
This is in agreement with experimental results for 
lyotropic low molecular weight nematics with negative 
xa, where measurement of the critical angle gives 20" for 
DSCG in water [5] and 25" for DSI in water 1161: 
results for lyotropic polymer nematics with positive za 
( PBDG/CH2C1,) give critical angles up to 50" for differ- 
ent polymer concentrations [23] and results for 5CB 
(x, > 0) give "I, = 85" [24]. Focusing on the case ,ya > 0, 
from the plot of the elastic term of (22) for a given urnax, 
increasing p K  increases the initial slope of the curve, and 
thus increases CI,; a similar analysis shows that for a 
given p K ,  decreasing u,,, iricreuses a,. A picture of a, as 
a function of these parameters can be seen in figure 6(a)  
with the help of a phase transition analogy presented 
below. 

The second ansatz for the distortion of the nematic 
director will be a splay-bend mode, replacing in (14) for 
n 

n = q,s + q2z  (24) 

Following similar calculations as for the bend case, the 

Y 
0 . 6 ,  1 

- 0 . 2  =+a O 

-0.41 
-0.6 

a 
Y 

0.61 1 

4 5  90 ?r%--aao 
-0 .4  

- 0 . 6  C 

reduced mean free energy density can be written as 

- [ 1 + cos (2a)J0(2O,)] (25) 

with & ( G O )  given by (19) and 

and with now related to ii,,, by 

(28) 

In the limit of zero splay, py + 0, equation (25)  reduces 
to (18) and (28) to (21) for the bend case as expected. 
The plot of the splay-bend potential @zb(G,) given by 
(25-28) gives curves similar to those shown in figure 4, 
now with the extra parameter p q .  Inspection of @zb(O,) 
shows that for the parameters of AZA9, the critical angle 
a, is shifted for higher values with increasing pq: pq = 
0.5 gives x, = 49", pq = 1 gives CI, = 51", all these values 
being consistent with results from magnetic reorientation 
experiments for this PLC 1311. The analysis hereafter 
will show, however, that a, can also decrease with 
increasing p q .  This can be seen by minimising the 
splay-bend potential @;b(H,j with respect to H,, giving 

Y 
0 . 6  

- 9 . 4  -0.2 : 0 Id8 o"0 I 0 

-0.61 

Y 
b 

0.6  

-0.2 
-0.4 

d -0.6l 

l o  

Figure 5 .  The equation (22) is solved graphically: curve 1 is the first (elastic) term y = E ~ O ~ ~ ~ ( O ~ )  for the same parameters of 
figure 4 (1, > 0, pq = 0, u,,, = 3.0 and p K  = 0.3) and curve 2 is minus the second (magnetic) term y = - 2 cos (2cr)J, (20,) for 
the following values of the rotation angle: (a) I = 0"; (b) I = 40"; (c) ct = 60"; ( d )  u = 90". (u) and (5) show only the solution 0, = 

0, while (c) and (d )  show another solution at 0' # 0. For xa < 0 thc magnetic term in (22) is negative and the figure should be 
read backwards. 
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0 

0.5 1 1.5 2 

PK 

(4 

0.5 1 .o 1.5 
X 
(b)  

Figure 6. Phase diagrams for the bend potential @ 2 ( O o ) .  
(a) From (42a)  with xa > 0 we get GI, as a function of p K  
with u,,, as a parameter. ( b )  From (42b)  we get GI, as a 
function of x = K,qI/xaH2; at x = 1 the curve goes to 
infinity for xa > 0 and to zero for xa < 0. 

the equation 

&160[hb(80) + p;hs(@O)l f 2cos(2a)Jl(280 

where 

U e O )  = PK + 1 - ( P K  - 1)J0(280) 

and with hb(eO) and given by ( 2 3 )  and (28 

= O  
(29) 

(30) 
, respect- 

ively. Following the same graphical method as for the 
bend case, we observe that ci, increases with increasing 
pq for 0 < p K  < 1, and decreases with increasing pq for 
p K >  1. This again can be pictured with the help of a 
phase transition analogy as shown in figure 7 (b). This is 
in agreement with the known result that bend distortions 
are favoured for K,/K, < 1 (in the infinite chain limit, 
K 3 / K I + 0  [29] and splay is forbidden), while for 
K3/K, > 1 splay is favoured. 

Our third ansatz for the distortion will be a twist-bend 
mode, corresponding to an out of plane component for 
q, which now gives for 52 in (14): 

(31) 52 = q,Y + qzz 

451 5 
0.5 1 1.5 2 

PK 

(4 

901 1 I 

0 . 5  1 1.5 2 

Pe 
(b) 

Figure 7. Phase diagrams from equation (43) for the splay- 
bend potential @ $ ( O o )  with xa > 0 in the ( p K ,  a,) plane: 
(a) with u,, as a parameter and pq = 1; (b) with pq as a 
parameter and u,,=2, showing that a, increases with 
increasing p 4  for 0 < pK < 1 and decreases with increasing 
pq for p K  > 1. 

Following the same steps as before, the calculation 
for the reduced mean free energy density gives 

DLb(e0) = E2e;  + Q:(eo) (32) 

where D:(O0) is the bend potential given by (18) and 

(33)  

is a twist elastics to magnetic energy ratio arising from 
the introduction of the out of plane component of the 
wavevector. This ratio is related to the reduced wave- 
length urnax by 

(34) 

where now pq is given by 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



658 J. P. Casquilho et al. 

Equation (32) with the relations (18). (19), (28), (34) 
and (35) gives for the twist-bend potential 

- [ 1 + cos ( 2c()J,( 20,)] (36) 

I n  the limit of zero twist, p q  +0, equation (36) reduces 
to (18). The plot of @kb(OO) again gives curves similar 
to those shown in figure4, showing a critical angle 
depending on four parameters: u,,,, pk = K,/K, ,  K J K ,  
and py = qL/q,.  Minimising the potential (36) with 
respect to 0, gives the equation 

+ 2 cos ( 2 x ) J ,  (20,) = 0 (37) 

with hb(6)O) given by (23). Following the same graphical 
method as for the preceding cases. we conclude that, for 
given urn,,, pq and p K ,  a, increases with increasing 
K,/K I .  The influence o f  py is harder to understand than 
the splay-bend case, since the elastic term in (37) 
depends on two elastic ratios, K , / K ,  and K J K , :  while 
for K 2 / K ,  < xC, whcrc x, is a critical ratio of K,/K1,  a, 
decreases with increasing pq, for K J K ,  > x,, x, increases 
with increasing p,, and x, increases with increasing 
K , / K ,  with the law x, LC K,/K,.  Thus both anisotropies 
play a role in the twist-bend instability driven reorienta- 
tion by affecting the critical angle. A study based on a 
phase transition analogy (see $4) helps to clarify the p q  
dependence of a,: for K,/K2 < 1, ‘tic increases with 
increasing pq (increasing the twist component of the 
distortion), while for K,/K,  > 1, a, decreases with 
increasing p q  (see figure 8 (a)), showing that bend distor- 
tions are favoured for K,,IK, < 1, while for K,/K, > 1 
twist is favoured. 

4. Results from a phase transition analogy 
The plot of the potentials @zb(R,) and @kb(Ooj, as 

shown in figure 4 for the special case p 4  = 0, remind ns 
of a second order phase transition, with the angle a 
playing the role of the external parameter and the value 
of the amplitude QO, corresponding to the minimum of 
the potential, 0, the role of the order parameter. As in 
second order phase transitions [ 301, the order parameter 
vanishes continuously at GI = a,: for X, > 0, 0 contin- 
uously dccrcascs by decreasing the rotation angle, 
going to zero for a+a,. The symmetrical ‘phase’ with 
0 = 0 is unstable for a < a,. The amplitude 0, plays the 
same role of an order parameter as for the apcriodic 
magnetic Frtedericksz transition, which is also ana- 
logous to a second order phase transition 1261. This 
analogy suggests the use of the I.andau theory of second 

1 2 3 4 
K, / K Z  

( h )  

Figure 8. Phase diagram corresponding to equation (44) in 
the (K,/K,,a,) plane: (a )  with pq as a parameter, for 
u,,, = 2 and K J K ,  = 02,  showing that a., increases with 
increasing pq for K 3 / K z  < 1 and decreases with increasing 
p q  for K, /K ,  > 1; (h )  with K J K ,  as a parameter, for 
u,, = 2 and py = 1. 

order phase transitions as an approximation to study 
the behaviour of the system near the critical angle. This 
theory should give a good approximation since 0 -+ 0 
when a +GI,. Following the usual Landau approach, we 
expand the appropriate potential in a power series of 0, 
up to the fourth order. 

with 

@)= -(1 +cos2x) (39) 

In (38 j, the odd-order terms vanish identically due to 
the symmetry of the problem (0, is physically equivalent 
to -O , , ) .  For the bend potential @:(OOj given by (18), 
we have 

(40) 

(41) 

a = 2(c1p, + cos 2a) 

h = E l (  1 - p h )  - cos2a 
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Magnetic reorientation of nematic polymers 659 

The transition points are determined by the equation 
a = 0 .  At this point, a= a,. The coefficient a can be 
written, using equation (21), as a function of the para- 
meters u,,, and p K ,  and the equation becomes 

or, using (20) with q = q2 

From (42a) we get lines of transition points in the 
(p,,a,) plane with u,,, as a parameter, as shown in 
figure 6 (a). From equation (42 b) we get a phase diagram 
in the (K,q;/xaH2, a,) plane as shown in figure 6(b).  This 
equation tells us that, in the Landau approximation, the 
important quantity at the transition point is the ratio of 
the (bend) elastic to the magnetic energy. At the trans- 
ition point, this equation implies that xa > O*a, > 45", 
and xa < O*a, < 45". From figure 6(b)  we can see that 
in the case x a > O  the condition for a, <90" is 
zaH2 > K,q:. For the parameters of the polymer AZA9, 
this gives a critical field H, = 4.6 kG. The actual magnetic 
reorientation experiment with this sample was performed 
under a field of 21.4kG, well above H,. 

The transition at a = O  is second order if b>O and 
first order if b < 0. For xa > 0 and pK < 1, or xa < 0 and 
p K  > 1 ,  b is always positive at the transition point, where 
a=a,. This should be the case for polymers with long 
flexible chains (pK < 1) and xa > 0, or for LMWLC with 
p, > 1 and xa < 0. To investigate the possibility b < 0 in 
the two other cases, we anaiyse the tricritical point 
defined by a = b = 0. This equation gives E~ = 0, which 
by (20) means that the tricritical point is attained 
asymptotically at vanishingly small K ,  or q. This means 
that the transition is always second order. 

Similar conclusions are reached from the analysis of 
the splay-bend and twist-bend cases, as expected on 
purely physical grounds. We give only the results leading 
to figures 7 and 8. For the splay-bend case, at the 
transition point, we get from the equation a = 0 with 
Pq = 4,/4,: 

The phase diagram from (43) in the ( p K , x G )  plane is 
shown in figure 7, with urnax as a parameter in figure 7 (a)  
and with y, as a parameter in figurc 7 (h) (see discussion 
following equation (29)). For the twist-bend case, the 

equation a = 0 with p, = qy /qz  becomes 

Figure 8 shows the phase diagram corresponding to 
equation (44) in the ( K 3 / K 2 , u C )  plane with (a )  pq as a 
parameter (see discussion following equation (37)) and 
(b) K2/K1 as a parameter. 

5. Discussion 
We can get an estimation of the expected range of 

values for the critical angle a,. We focus on the case 
xa > 0 and start with p, = 0. The critical angle increases 
with increasing p K  and with decreasing u,,,, as shown 
in figure 6. We will first estimate a minimum value for 
this latter parameter. By inspection of figure 1 (which 
gives u,,, for the case p, = l) ,  we choose for this value 
u,,, r 2. From equation ( 12 a), we get the corresponding 
minimum wavelength A,,, E 8t1. For polymers, we take 
a strong field H=20kG,  xa% 10P7(CGS) and 
K ,  M lop5 dynecm. This gives from (4b), t l  g 5 pm and 
we get A,,, z 40 pm. We choose for a maximum value 
urnax g 20, corresponding to A,,, E 400 pm. For flexible 
chains, pK < 1 and choosing 0-3 < p K  < 0 7  we get from 
equation (22) 45" < a, < 57" (for a picture, in the Landau 
approximation, the reader should refer to figure 6 (a)), 
setting an upper value for a, consistent with experimental 
results for flcxible polymers [23,25,31]. Adding a splay 
component to the distortion of the director field up to 
p, = 1, from equation (25), increases the estimated upper 
value of a, to x60" (for hard rods p K  > 1 and a, would 
decrease) (for a picture, the reader may refer to figure 7). 
Adding a twist component will decrease a,, since 
K , / K 2  > 1 is always expected (a picture is given in 
figure 8(a)) .  For LMWLC, we take K ,  x lOP6dynecm 
and x, M (CGS), which gives for a field H = 20 kG 
5 ,  z 2 pm and Amln E 16 pm, and for a field H = 2 kG 
5 , z 16 pm and A,, g 130 pm. Taking 1 < p K  < 2, from 
equation (22) with umax=2, a, can go up to ~ 9 0 "  (a 
picture is given in figure 6(a)). The critical angle of 
rotation reported for 5CB [24] is 85" for working fields 
H = 2kG. For this material p, z 1.4 [33] and from 
equation (22) for a, = 85" we get u,, = 1.88 (see 
figure 6(a) ) ,  which gives, from (12 a) with 5, 2 16 pm, 
II E 120pm, of the order of our estimation for Am,,, for a 
field of 2 kG. Wavelengths of this magnitude are found 
for 5CB in the electrically driven splay Frtedericksz 
transition [ 141, while I. M 15 pm are found in the periodic 
deformed hybrid alignment of the nematic cell of 5CB 
[ 341 for cell thickness less than 0.15 pm. Since in this 
case the role of the field is formally played by the cell 
thickness [34], this seems to correspond to the strong 
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660 J. P. Casquilho et d. 

field behaviour in our problem. Adding a splay or a 
twist component will only decrease a, since p, > 1 and 
K,,'K, > 1. Optical measurements of the wavelength and 
pq in a sample during a magnetic reorientation experi- 
ment, together with the measurement of a,, are of course 
necessary to check whether these results are quantitat- 
ively correct. In this case, equations (29) or (37), via the 
measurement of a, and of i and p q  by optical techniques, 
can provide urnax and p K  (and K ,  and K ,  as explained 
at the end of $ 2 )  without making use of the NMR 
spectra simulation technique. In the case za < 0, a 
description in terms of u,,, is no longcr adequate since 
t1 bccomes complex, but the prediction of our model 
that in this case a, is in the range 0"-45" is consistent 
with the results for a, reported in the literature (see 
discussion following equation (22)). 

Although our model seems to work qualitatively well 
both for PLC and LMWLC, our static study of the 
critical angle is probably a poor approximation for 
LMWLC, with short relaxation times (seconds or milli- 
seconds), and should be a better approximation for PLC 
where, due to their high viscosities, to is orders of 
magnitude higher than the relaxation times for LMWLC, 
and increases rapidly with the degree of polymerisation 
(minutes to hours) [ 18-23,25,32]. Although arguments 
based only on elastic energy are incomplete, numerical 
results for the splay FrCedericksz transition [4] indicate 
that the bend distortion is mediated almost entirely by 
the bend restoring force. none of the viscosities having 
much effect on it. When the bend distortion is the 
leading contribution, which should be the case in the 
bulk for high fields [4]: equation (221, or the Landau 
approximation (42 a), should thens give reasonable 
results. 

6. Conclusions 
In the first part of this work. we havc shown that the 

bend reorientational equation (1) leads to a pattern of 
splay -bend walls, and we have studied its dependence 
on the ratio K , / K ,  and on the reduced wavelength ti,, 

(12 a). We have also shown that with appropriate NMR 
experiments we can get this elastic ratio and u,,, and, 
finally, that with the measurement of the wavelength we 
can get both K ,  and K,. 

In the second part of this work, we have shown that 
the minimisation of a distortion Frank free energy can 
explain the existence of a critical angle separating the 
uniform director magnetic reorientation regime from the 
distorted director reorientation regime. We have shown 
evidence for the dependence of this critical angle on the 
elastic anisotropy and urnax, thus allowing for the calcula- 
tion of values for a, using the N M R experimental results 
obtained in the first part. We have used different trial 
distortion wavevectors to study the dependence of a, on 

the elastic ratios. This dependence is simple to visualisc 
with the help of a second order phase transition analogy, 
where the angle of rotation plays the role of the external 
parameter and the value of the amplitude of the distor- 
tion plays lhc role of the order parameter. For a splay-b- 
end mode, we conclude that tl, increases with increasing 
splay component of the distortion for K , / K ,  < 1 and 
decreases with increasing splay for K J K l  > 1. For a 
twist-bend mode, a, increases with increasing twist 
component of the distortion for K,IK, < 1, and 
decreases with increasing twist for K,/K2 > 1. 
Depending on these ratios, critical angles 45" < a, < 90" 
are predicteds for materials with positive anisotropy of 
the magnetic susceptibility xa and 0'' < 31, < 45" (mod x/2) 
for materials with xa < 0, in agreement with published 
data. 

The authors wish to thank Dr F. Volino for helpful 
comments. This work was partly financed by JNICT 
of Portugal under research contract PBIC/C/CEN/ 
1049/93 and by the EU under HCM-Network CHRX- 
CT93-0282. 

Appendix 
( A l )  The calculation of (16) with ( 1  5 h)  is easily done 

with the help of normal trigonometric relations from 
which we get the result 

I2 + ~ 

sin 27-t 2a I31 
4 -xaH2( 1 +y 1 cos 2a 

with 

I ,  = cos ( 2Q0 sin 52)  cos'52 d52, 

I 2  = cos (24 ,  sin 52)  d52. 

I ,  = sin (28 ,  sin Q) d52. 

These integrals are evaluated with the help of tables of 
integrals as found in [ 35 (u ) ] .  The integral I, is cvaluated 
in four steps. Putting 20, = z ,  we get 

Tc l!! 71 J i ( z )  

2 1  2 z  
cos ( z  sin a) cos2 l.2 dC.2 = - - J ,  ( 5 )  = - ~ 

l, cos ( z  sin a )  cosl 52 dQ 

= 1" cos ( z  sin (52 + 7~12)) cos2 (W + n/2)  d52 
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Magnetic reorientation of nematic polymers 66 1 

= cos ( z  cos Q )  sin’ Q dQ 

and similarly we get the results for the two other steps, 
giving 

Using a similar method for I 2  we get 

I ,  = [ cos ( z  sin Q )  dQ + cos ( z  sin (Q + K ) )  dQ 1 

I: 
= 2 1 cos ( z  sin Q )  dQ = 2xJ,(z)  

and for I ,  

I ,  = 6: sin(z sinQ)dQ + sin(z sinQ + n)dQ = 0 

Putting these results in the above expression for Fb we 
get (17). 

(A2) Equation ( 2 2 )  with ( 2 3 )  is obtained by differen- 
tiating (18) with respect to Bo, putting 28, = z and using 
C35 (h)l: 

d d 
- [ z J ,  (z)]  = zJ,(z) and - J,(z) = - J ,  (z) dz  dz  
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